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Damping layers, widely used for noise and vibration control of thin-walled structures,
can be designed to provide an optimal trade-off between performance and weight which
is of particular importance in the automotive and aircraft industry. The goal of the
presented work is the minimization of sound power radiated from plates under broadband
excitation by redistribution of unconstrained damping layers. The total radiated sound
power is assumed to be represented by the sound power radiated at the structural
resonances. Resonance tracking is performed by means of single-degree-of-freedom
(SDOF)-approximations based on near-resonance responses and their frequency
derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing
conditions are considered. Frequency dependent Young’s modulus and loss factor of the
damping material are taken into account. Vibration analysis is based on the finite element
method (FEM) while acoustic radiation is treated by means of Rayleigh’s integral formula.
It is shown that, starting from a uniform damping layer distribution, substantial reductions
in radiated sound power can be achieved through redistribution of the damping layers.
Depending on the given situation, these reductions are not only due to amplitude reductions
but also to changes in vibration shapes and frequencies.
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1. INTRODUCTION

Damping layers of various kinds are extensively used for noise and vibration control of
thin-walled structures such as automotive body parts, aircraft panels, containers, or
casings, and considerable research has been devoted to the field [1, 2]. Compared to the
more modern vibration control measures, for example, active and semi-active control, they
are still an attractive alternative (or supplement) for reasons of economy, simplicity, and
stability. Their main purpose is to dissipate vibration energy, thereby reducing resonance
amplitudes or increasing decay rates. This is achieved by incorporating materials into the
damping layers that exhibit viscoelastic behavior. Most materials are polymer based but
enamels are also used for high temperature applications. Recently, shunted piezoceramics
have been suggested for use as a damping material [3].

There are basically two generic kinds of damping layers, unconstrained and constrained,
both of which are applied to the surface of the structure to be damped (see Figure 1).
Unconstrained layers consist of a single layer of viscoelastic material which is subject to
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Figure 1. Types of damping layers.

tension and compression through bending of the base structure. In contrast, constrained
layers force the damping material into shear by means of a constraining layer of high
in-plane stiffness. While the latter, in general, are more efficient in a narrower frequency
band, unconstrained layers, if applied uniformly, spread the damping effect over a wider
range of wavelengths. Since unconstrained layers are easily shaped, they are attractive for
shape optimization and are therefore considered in this work. However, the general
approach presented can be applied to constrained layers and other vibration reduction
measures as well.

Due to the nature of their action, the performance of damping layers strongly depends
on their placement with respect to structural vibration shapes. For example, unconstrained
layers produce the highest damping if placed at structural antinodes and, since the early
recognition of this fact [4], its potential has been verified by several authors [5–8]. Various
efforts were also made to redistribute the damping material in a directed fashion by using
optimization techniques. Maximizing modal loss factors [9], minimizing weight for given
damping and natural frequencies [10], minimizing fixed-frequency forced responses [11, 12]
and minimizing resonance responses [13] are possible ways to tackle this problem. In the
present work, the latter approach is used since it allows excitation properties to be taken
into account while focusing on resonances where the damping takes full effect. It still
allows consideration of broadband excitation as long as the overall vibration response is
dominated by the resonances.

Minimization of resonance responses through structural modifications requires
resonance tracking since changes of structural stiffness and mass distribution will affect
the resonance frequencies. If the response calculation is based on modal superposition, the
modal analysis readily provides the resonance frequencies at which the response can be
evaluated. However, modal analysis is relatively expensive computationally and leads to
difficulties if frequency dependent material properties are involved [14]. Therefore, direct
frequency response analysis is used here, creating a min–max-problem [15] where the
necessary update of the resonance frequencies after each design change is called the inner
problem. This inner problem is solved by means of approximations based on single
degree-of-freedom frequency responses.

Structural optimization with respect to radiated sound power can be established by
minimizing the structural vibration amplitudes (e.g., minimizing the average mean square
surface velocity) [16]. This purely structural approach is feasible if the acoustic wavelengths
are much smaller than the structural wavelengths, in which case the radiation impedance
approaches the plane-wave impedance everywhere [17]. For radiating structures subject to
bending vibrations, this is fulfilled at sufficiently high frequencies. However, at lower
frequencies the radiated sound power not only depends on the amplitude but also on the
profile of the surface velocity as well as on the frequency. This fact can be utilized to create
‘‘weak radiators’’ by changing the structural mode shapes through variation of material
properties [18], the thickness distribution [19], attached lumped masses [20] or fiber
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reinforcements [21]. Since damping layers not only introduce damping but also have the
potential to change vibration shapes and frequencies, it is necessary for a true
low-frequency acoustical optimization to take all of those effects into account. This will
be attempted in the present investigation for baffled circular plates which are relatively
easily modelled yet show many effects that occur in more complicated structures.

2. PROBLEM FORMULATION

The goal of the present work is to optimize the distribution of unconstrained damping
layers of limited volume on circular plates with respect to minimal radiated sound power
in a given frequency band. The investigations are based on the following general
assumptions.

Small deflections are considered so that linear vibration theory and acoustics can be
applied.

The frequency band of excitation includes structural resonances. The damping is small
enough so that the structures always exhibit distinct resonances. The resonances are well
separated so that they can be recognized as single peaks in the frequency spectra.

The total power in a frequency band is represented by the power at the resonance peaks.
The base structure material as well as the damping material are homogeneous and

isotropic. The material properties of the damping material are frequency dependent
(temperature or other environmental influences are not considered).

The structures are embedded in an infinite plane baffle.
The impedance of the radiating structure is much higher than that of the ambient

medium so that fluid loading can be neglected.

3. VIBRATION ANALYSIS

Because fluid loading is neglected, structural analysis can be treated independently from
the acoustic analysis. Although the base structure considered has a simple geometry, closed
form solutions cannot be used since the damping layer must be allowed to assume arbitrary
distributions. Therefore, the FEM is chosen to model the base plate as well as the damping
layer using 4-node axisymmetric solid elements (see Figure 2). Incompatible shape
functions are introduced to prevent shear locking [22].

Figure 2. Axisymmetric solid element.
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A two-layer damping composite is modelled by stacking the elements. Due to the
formulation of the elements, what needs to be generated to model a 3-D structure is only
a 2-D grid representing a radial cut through the structure. In view of the need to embed
the structural analysis into an optimization procedure, a compact, stand-alone
FE-program was implemented instead of using a commercial code.

Forced response analysis in the frequency domain is quite simple and readily allows for
frequency dependent material properties. Damping is introduced through a complex
stiffness matrix [23] (note that here, as well as in the acoustic analysis, time dependency
is represented by eivt.),

[K(v)−v2M]u(v)= f(v), (1)

where u is the vector of nodal displacements, f is the forcing vector, v is the angular
frequency of excitation, M is the mass matrix and K is the stiffness matrix which is
assembled as

K(v)= s
m

Em (v)K*m [1+ ihm (v)], (2)

where m denotes a particular material. The K*m are sub-matrices from which the frequency
dependent Young’s modulus, Em (v), and the loss factor, hm (v), have been extracted.
Together with the mass matrix, these matrices are kept in memory in order to save
computation time for cases where only the frequency is changed (e.g., resonance search).

In order to facilitate resonance tracking within the optimization procedure, the
derivative of the vibration response with respect to frequency is needed (see section 5).
Given that the vibration response itself is known, the derivative can be computed from

[K(v)−v2M]
1u(v)
1v

=$2vM−
1K(v)

1v %u(v)+
1f(v)
1v

, (3)

which is easily derived from equation (1). Since the left-hand side matrices of equations
(1) and (3) are identical, the triangularization needs to be done only once which saves a
considerable amount of computational effort.

4. ACOUSTICAL ANALYSIS

The development of numerical methods for solving acoustic radiation problems such as
FEM, BEM, and Wave Superposition, has made it possible to investigate radiators of quite
complex geometries. Most of these methods create a linear equation system by introducing
a number of unknowns (e.g., pressures at discrete points, discrete sources) and are thus
computationally quite involved. However, for plane radiators in an infinite baffle there is
a relatively inexpensive solution known as the Rayleigh integral. The calculation of the
sound field based on the Rayleigh integral requires only surface integrations, which makes
the numerical effort considerably smaller. In view of the many evaluations occurring in
an optimization loop, this is very desirable.

With reference to Figure 3 the Rayleigh integral can be formulated as

p(r)=2irv gS

nn (rs )g(=r− rs =) dS(rs ), (4)



Baffle
r

r – rs

rs

n(rs)

p(r)

S

z

x

y

      1149

Figure 3. Plane radiator in a baffle.

where p(r) is the acoustic pressure at field point r, nn (rs) is the normal surface velocity at
surface point rs , g(=r− rs =)= e−ik=r− rs =/4p=r− rs = is the free space Green function, k=v/c
is the acoustic wave number, c is the speed of sound in the ambient medium and r is the
mass density of the ambient medium.

The radiated sound power W is obtained by integrating the normal component of the
time average intensity, I, over a virtual surface that surrounds the radiator:

W=gH

I(rH ) · nH dH=
1
2 gH

Re (p(rH )v*(rH )) · nH dH. (5)

Here nH is the outward normal vector of the surface. Choosing the virtual surface to
coincide with the surface of the radiator and expanding the free space Green function, one
obtains, from equations (4) and (5),

W=
rv

4p
Re 0gS

n*n (rs ) gS'

nn (rs')
sin (k=rs − rs'=)+ i cos (k=rs − rs'=)

=rs − rs'=
dS' dS1, (6)

where the prime is used to distinguish between nested integration variables.
By using the relationship n*(ra )n(rb )+ n(ra )n*(rb )=2 Re [n*(ra )n(rb )] which holds for

any pair of points (a, b), it can be shown that the cosine term does not contribute to the
sound power and hence can be dropped, so that equation (6) reduces to

W=
rv

4p gS

n*n (rs ) gS'

nn (rs')
sin (k=rs − rs'=)

=rs − rs'=
dS' dS. (7)

This not only reduces the computational effort, but also avoids the singularity that occurs
if =rs − rs'==0.

The radiator as well as its vibration pattern are now assumed to be axisymmetric with
respect to the z-axis and to be subdivided into N rings, narrow enough that velocity and
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Figure 4. Discretization of the radiator surface in rings, kth ring shown.

pressure can be taken as constant over each ring (see Figure 4). Utilizing symmetry, the
acoustic power is then approximated by

W= rv s
N

i=1

aibin*ni s
i

j=1

kajbjnnj g
p/2

−p/2

sin [kdij (f)]
dij (f)

df, k=612 if i= j
if i$ j7, (8)

where dij (f)= =ri − rj (f)=, ri =(ai , 0, 0)T (f=0, arbitrarily chosen), and
rj (f)= (aj cos f, aj sin f, 0)T. Equation (8) is evaluated numerically by using
Gauss-integration with automatic refinement. The surface rings are chosen to coincide with
the finite element discretization where the normal velocity for each ring is evaluated at the
middle radius of the corresponding element surface edge.

If the wavelengths in the ambient medium are much smaller than those on the structure,
which, for bending waves, holds at sufficiently high frequencies, the radiation impedance
approaches rc and the computation of the radiated power simplifies considerably:

W� = rc gS

1
2

nnn*n dS1 rcp s
N

i=1

aibinnin*ni . (9)

This quantity can also serve as a measure of the overall vibration level and is later used
for comparison purposes. With equation (9) the radiation efficiency can be written as

s=W/W� . (10)

The corresponding dB-levels are defined as

LW =10 log (W/W0) dB, LW� =10 log (W� /W0) dB, Ls =10 log s dB, (11)

where W0 =10−12 W.

5. OPTIMIZATION STRATEGY

Due to the inherent complexity of the relations involved, minimization of radiated sound
power forms a highly non-linear optimization problem. In this work, optimization is based
on mathematical programming techniques which use problem-independent algorithms to
solve iteratively a ‘‘black box’’ minimization task [24, 25]. A general scalar optimization
problem is mathematically formulated as

Min
x

f(x), g(x)E 0, h(x)=0, (12)
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where x$Rn is the vector of design variables, f :Rn:R is the objective function, g:Rn:Rp

is the vector of inequality constraints, and h:Rn:Rq is the vector of equality constraints.
In words: ‘‘Determine a set of design variables that makes the objective function a mini-
mum and at the same time fulfills the constraints’’. The problem is solved by forming an
optimization loop which can be divided into three parts: ‘‘structural analysis’’,
‘‘optimization model’’, and ‘‘optimization algorithm’’ [26]. The optimization model,
described in detail below, provides the interface between the other two parts by
transforming design variables into structural variables and evaluating the objective
function and the constraints based on the structural and acoustic response. Out of the wide
variety of algorithms that have been developed for non-linear constrained minimization
a hybrid generalized-reduced-gradient/quadratic-programming method (QPRLT, [27]) is
used in this work. This algorithm is one of the options included in the optimization
package SAPOP [28]. It was chosen because of its good performance combined with the
controllability of a line-search based algorithm. The necessary first order sensitivity
information is computed via finite differences.

5.1.  

The thickness distribution of the damping layer is described by a polygon which forms
the desired envelope to the finite elements (see Figure 5). The height of each corner point
of the polygon is a design variable. The r-co-ordinates of the polygon corners are chosen
at equidistant intervals where the first and the last point coincide with the boundaries (axis
or rim) of the plate.

In order to allow for steep slopes, design variables may become negative. However,
eliminating and recreating elements is avoided by introducing a lower limit for the element
thickness, which is 1% of the thickness of the base plate.

5.2. 

The only constraint employed in this problem places an upper bound on the amount
of damping material, thereby avoiding trivial solutions:

g1(x)=
Vd (x)
Vdmax

−1. (13)

Here, Vd (x) is the volume of the damping layer which can be readily obtained from the
FE model, and Vdmax is its upper limit.

5.3.  ,  

The goal of the present optimization is to minimize radiated sound power over a
frequency band that contains structural resonances. Strictly speaking, broadband
optimization requires the objective function to be computed by integration over the
frequency band. This is a computationally expensive task, especially in the presence of
sharp resonance peaks and complicated radiation behavior. Therefore, it is assumed here

Figure 5. Design variables describing the thickness distribution of the damping layer.
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that the overall radiation is characterized sufficiently by the sound power radiated at the
structural resonance peaks. The objective function is then defined as

f(x)=10 log 0s
j

k= i

10(LWk
−DLAk

)10−11 dB=Li,j
WA , (14)

where LWk (LW� k will also be considered for comparison) is the sound power level and DLAk

the A-weighting level-shift at the kth resonance frequency.
With this formulation, the major problem is to identify and track the resonance peaks

during optimization since, generally, any modification to the structure will cause the peaks
to migrate. Using modal analysis to re-identify the resonance frequencies is not only
computationally intensive but encounters difficulties because of the frequency dependent
stiffness matrix. Instead, an approximation technique is employed here for resonance
tracking which uses SDOF-response functions to identify the resonance peaks, following
the basic ideas of modal testing. From the modal representation of the vibration response,

u(v)= s
k $fk

ak +ibk

1− (v/vk )2 + ihk% (15)

(ak +ibk =modal participation factor), it is seen that at frequencies close to an
eigen-frequency, vk , the corresponding mode-shape, fk , dominates the response, provided
the damping is not too strong. In this case all the other modes may be combined to a vector
of relatively small constants. To simplify the problem further, i.e., to obtain a linear
equation system, this constant vector is also neglected leaving

u(v)1 qk (v)=fk
ak +ibk

1− (v/vk )2 + ihk
. (16)

Assuming that the response vector, ûk , as well as its frequency derivative, û. k , at a
near-resonance frequency, v̂k , is given, one can approximate the mode shape by
fk 1 ûk /ûk , where ûk is a suitably chosen degree of freedom (here, on the axis and
perpendicular to the plate). The SDOF-parameters in equation (16) can then be determined
by substituting v̂k , ûk , and u
. k into equation (16) and its frequency derivative. Separating
the result into real and imaginary parts and rewriting yields a linear equation system for
the unknown parameters:

1 0 Im (u) Re (u) ak Re (u)

0 1 −Re (u) Im (u) bk Im (u)
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

G

G
v Re (u̇) −v Im (u̇) 0 −2 Re (u2) hk

= 0

v Im (u̇) v Re (u̇) 0 −2 Im (u2) (v/vk )2 0

v= v̂k

u= ûk

u̇= û.k

(17)

The resonance response is then estimated by substituting these parameters and the
approximated mode shape into equation (16). Since the objective function is based on
velocities rather than displacements, the response is estimated at the frequency of
maximum velocity:

ukmaxV 1 qk (vkmaxV ), where vkmaxV =vk (1+ h2
k )1/4. (18)
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Figure 6. SDOF-approximations of the first three resonance peaks of a clamped plate, dashed verticals indicate
the evaluation frequencies v̂k .

To ensure close resonance tracking the approximation process is repeated based on the
true structural response at the estimated resonance frequency until a relative frequency
deviation smaller than 10−4 is reached. At the beginning of the optimization, initial
estimates for near-resonance frequencies are found by a coarse frequency sweep, whereas
during the optimization process such estimates are simply taken from the previous
iteration. This method yields fast convergence and behaves quite robustly since a frequency
guess can be relatively far from the actual resonance (see Figure 6). Additionally, possible
‘‘jumps’’ to neighboring resonances can be controlled by choosing the line-search
progression of the optimization algorithm appropriately. However, in cases of closely
spaced resonances, strong shifts of resonance frequencies, and/or high damping, more
advanced techniques such as including residuals, MDOF-curve fits, modal filtering, or
pre-scanning may become necessary to ensure proper resonance tracking. If the structural
changes are very small, i.e., during sensitivity analysis, updating the resonance frequencies
is omitted.

6. EXAMPLES

The optimization procedure described above is applied to circular plates of three
different boundary/driving conditions. Only axisymmetric vibrations will be considered, as
non-axisymmetric modes always exhibit zero volume velocity and thus generally radiate
weakly at low frequencies. The driving force amplitude is kept constantly 1 N over the
entire frequency range. Unless stated otherwise, A-weighting is applied to the radiated
sound power which is computed on the uncovered (flat) side of the plates. All plates have
a radius of ap =150 mm. They are made of steel, the material properties of which are
assumed to be as follows: Young’s modulus, Es =2·1×105 N/mm2; loss factor, hs =0·0;
Poisson’s ratio, ns =0·3; mass density, rs =7850 kg m−3. The frequency dependent
viscoelastic properties and the density of the damping layer, (see Figure 7) are measured
values for Terodem8 5000 at room temperature [29] while Poisson’s ratio is chosen close
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Figure 7. Frequency dependent properties of the damping material.

to 0·5 following general literature data: Poisson’s ratio, nd =0·45; mass density,
rd =1850 kg m−3. For the ambient medium the relevant properties are assumed to be:
speed of sound, ca =343 m s−1; mass density, ra =1·21 kg m−3.

A ‘‘baseline’’ plate is chosen to consist of a steel plate and a uniform damping layer each
having a thickness of 1 mm. The combinations of loads and boundary conditions
considered are shown in Figure 8, together with their FE-models. The base plate as well
as the damping material is discretized by one layer of 50 finite elements each. To avoid
a singular stiffness matrix in case of an axially free boundary (Case 2), the plate is
supported by a very soft spring (1 N mm−1). In Case 3, a lumped mass and a spring
(both ring-shaped) are attached to the plate rim, thereby simulating the impedance of an
attached structure (no rotational impedance). The mass equals 1/4 of the mass of the base
plate and the spring stiffness equals the static stiffness of a simply supported base plate
under uniform pressure load, evaluated at its center (64pa2

pK(1+ ns )/(5+ ns ), K=plate
bending stiffness).

Figure 8. Combinations of load/boundary conditions, load indicated by arrows.
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Figure 9. Acoustic frequency response functions of the clamped plate (Case 1).

Figure 10. Acoustic frequency response functions of the free plate (Case 2).

6.1.  - 

Changing the damping material distribution on the plates not only alters the damping
effect but also leads to different resonance frequencies and vibration shapes, thereby
changing the radiation behavior in a complicated manner. Even if the damping layer is
unaltered, frequencies and vibration shapes change from resonance to resonance, shifting
the ratio of the structural wavelength to the wavelength in air because of the dispersive
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nature of bending waves. In this way, varying the overall plate thickness (or the fluid
properties) also leads to different radiation patterns.

In order to obtain an idea of the effects discussed above prior to optimization, the
radiation behavior of the uniformly damped baseline plate, both with clamped and free
boundary conditions (Cases 1 and 2), is investigated below. Figures 9 and 10 show the
radiated sound power, with and without A-weighting, as well as the radiation efficiency
and the sound power based on average mean square velocity for a frequency range
encompassing the first five plate resonances.

In view of the rather obvious vibration response of the plate, expressed by LW� , Figures 9
and 10 already hint at the degree of complexity which the radiation may contribute to the
problem. However, if the frequency range is changed, say, by altering the plate dimensions
or materials, the radiation behavior also changes even if the vibration shapes stay the same.
This is illustrated in Figures 11 and 12 where the radiation efficiency of the plates is shown
for various frequency ranges. The frequency range is changed by means of a parameter,
a, which proportionally shifts the frequency for the acoustic analysis up or down while
the vibration response is kept unaltered.

From the figures above it can be seen that the radiation efficiency can easily vary by
the same order of magnitude as the vibration response itself, thereby shaping the acoustic
response in a critical manner. This is very pronounced in Case 2 where at low frequencies
the radiation efficiency exhibits strong dips which almost cancel out the structural
resonances and render the total sound power a rather smooth function. The reason for
this lies in the fact that, because of the axially free boundary, there are no external forces

Figure 11. Radiation efficiency of clamped plate (Case 1) for various frequency ranges.
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Figure 12. Radiation efficiency of free plate (Case 2) for various frequency ranges.

besides the excitation force. Since the excitation force amplitude is constant by definition,
the acceleration amplitude of the mass center of the plate is also constant. Therefore, the
plate’s axial momentum cannot have resonances. The transverse momentum of a
homogeneous thin plate in turn is directly proportional to its surface volume velocity,

U=gS

nn (rs ) dS, (19)

which, at low frequencies, predominantly determines the sound radiation. In contrast to
this, high frequency radiation is governed by the surface average mean square velocity,
meaning that the radiation efficiency approaches unity. However, as can be seen from
Figures 11 and 12, this region is reached only with higher modes or high bending wave
speeds: i.e., thick plates. The transition from the low to the high frequency range becomes
more abrupt as the modal order increases.

With regard to the optimization of damping layer distributions, the inclusion of acoustic
radiation increases the number of ways the objective function can be influenced. While
minimizing vibration amplitudes focuses on damping enhancement as well as increasing
stiffness, reducing radiated sound power can additionally utilize changes in vibration
shapes and resonance frequencies. This leaves more potential for optimization, but also
makes the objective function less smooth. Also, the maxima of the objective function no
longer necessarily coincide with the structural resonances. However, it is assumed that
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strong positive peaks of the radiation efficiency do not occur, so that the structural
resonances still represent the overall optimization goal. This will be checked for the final
design.

6.2. 

The initial design for the following examples is a uniformly coated plate with a damping
layer thickness equal to the plate thickness (1 mm). Unless stated otherwise, in each
example the first five resonances in the interval kap =0·1 · · · 10 (36·39 Hz · · · 3639 Hz) are
minimized simultaneously according to equation (3). Optimization is performed with
respect to the summed A-weighted sound power level, LWA , and, for comparison, with
respect to the ‘‘simplified’’ A-weighted level, LW� A , based on average mean square velocity
only. The number of design variables (thickness points) is 10.

First, a clamped plate under a point load at the center (Case 1) is considered. The
acoustic frequency response functions of the initial design (thinnest line in all figures) as
well as of the optimized designs, both based on the full computational model, are shown
in Figure 13 along with the corresponding damping layer distributions. The improvements
achieved through optimization are given in parentheses in the fashion (DLi,j

W� A , DLi,j
WA ), where

i and j denote the lowest and highest resonance included in the optimization. As can be
seen, both formulations of the objective function yield similar results. The minimization
of LW� A delivers a slightly better solution, even for the true sound power. Obviously, the
optimization with respect to LWA suffers from the greater complexity of the objective
function. (The algorithm monitors the Kuhn–Tucker conditions, but because of the very
shallow target area optimization tends to terminate for numerical reasons, so that there
is no exact proof for a true local optimum.) Started from the LW� A-optimum,
LWA-minimization produces negligible further changes. The power reductions are achieved
primarily by decreasing the average mean square velocity, while the radiation efficiencies
at the resonance frequencies are slightly increased. However, the radiation efficiency in
conjunction with the A-weighting determines which resonances are dominant.

A free plate excited at the rim (Case 2), is chosen for the next optimization example.
Its radiation behavior, as seen in section 6·1, is quite different from that of a clamped plate.
This particular behavior makes the initial design, a plate of constant thickness, almost
optimal with respect to the radiated sound power. Hence, minimization of radiated sound
power yields only very small changes in damping layer distribution (see Figure 14; the
thinnest line of the initial design coincides with the thickest line of the Min LWA -design
almost everywhere). This is not so, however, if sound power based on average mean square
velocity is minimized. Even though LW� Ais reduced considerably, the true radiated sound
power is increased by 4·8 dB due to the changes in radiation efficiency: i.e., weakly
radiating modes become better radiators. Although quite idealized, this example illustrates
that applying a damping layer to a structure for noise reduction may have no effect or
even a negative effect if not done properly.

In Case 3, the boundary conditions of the plate are more realistically chosen which
makes the radiation behavior deviate from the acoustically ideal case discussed above. The
first resonance of this configuration (piston-like mode) lies outside the frequency interval
of interest and is therefore not considered. While the second mode still radiates weakly,
the higher structural resonances are no longer matched by the radiation efficiency dips (see
Figure 15). Minimizing LW� A yields more than a 10 dB reduction of the total average mean
square velocity but only a 3 dB improvement in actual sound power. In contrast,
minimization of LWA lowers the radiated sound power by 5·7 dB although LW� A improves
by only 3·7 dB. Lacking the radiation efficiency information, the LW� A -minimization puts
emphasis on the second resonance, thereby making the third mode a better radiator. This
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Figure 13. Acoustic freqeuncy response curves and damping layer distributions of initial and optimized designs
(Case 1). LW� A-curve lifted by 10 dB for clarity.

Figure 14. Acoustic frequency response curves and damping layer distributions of initial and optimized designs
(Case 2).



110

20

30

40

50

60

70

80

90

100

10

60

–30

–20

–10

0

10

20

30

40

50

–40
10.1 10

kap

L
(d

B
)

LWA

LWA

(–3.7 dB, –5.7 dB)(–10.5 dB, –3.0 dB)

Min LWA
2,6Min LWA

2,6

L
W

A
, 

L
W

A
 (

d
B

)

L

110

20

30

40

50

60

70

80

90

100

10
10.1 10

kap

LWA

LWA

(–5.1 dB, –10.3 dB)(–10.2 dB, –3.6 dB)

Min LWA
3,3Min LWA

3,3

(–10.9 dB, –26.2 dB)(–19.0 dB, –12.8 dB)

Min LWA (Ed/5)(Ed/5)
3,3Min LWA

3,3

L
W

A
, 

L
W

A
 (

d
B

)

.-.   . . 1160

Figure 15. Acoustic frequency response curves and damping layer distributions of initial and optimized designs
(Case 3).

Figure 16. Acoustic frequency response curves and damping layer distributions of initial and optimized designs
(Case 3). Optimized for third resonance only. Ed reduced to 20% in lower figures.

still happens if the optimization is limited to the third resonance, as shown in Figure 16.
However, minimizing LWA of the third resonance alone yields a noticeable further reduction
of that peak over the full-range optimization. This is mainly achieved by pulling the
resonance peak and the radiation efficiency dip closer together.
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In order to elucidate the mode changing effect over the damping effect, more emphasis
is put on the mass distribution by taking a different damping material, the Young’s
modulus of which is reduced to 20% of the original value (still frequency dependent).
While minimization of LW� A (curve not shown to maintain clarity) leaves a peak similar to
the initial design curve of the previous case, the softer damping material enables the
LWA -minimization to almost cancel the third resonance completely (see Figure 16) (note
that the relative optimization gains in this case are much higher due to the softer damping
material [29]). This low radiation efficiency of the third mode is achieved at the expense
of the higher resonances, though.

7. CONCLUSIONS

With the example of circular plates, it has been shown that substantial reductions in
broadband radiated sound power are possible by directed redistribution of damping layers.
These reductions are due to several mechanisms which may be divided into ‘‘structural’’
effects and ‘‘acoustical’’ effects. The structural part primarily involves decreasing overall
vibration amplitudes through an increase of damping and dynamic stiffness. While more
damping lowers the resonance peaks, a higher dynamic stiffness reduces the response over
a wider frequency band. Both effects require the damping layer to be concentrated where
bending is highest (antinodes). However, if local stiffening becomes too great, the damping
performance will decrease as the structure seeks to bend somewhere else.

In the low- and mid-frequency range, where structural wavelengths are smaller than or
about equal to the wavelengths in the ambient medium, minimization of radiated sound
power can utilize changes in vibration shapes and resonance frequencies to reduce
radiation efficiency. These reductions are largely due to local source cancellations called
acoustic short-circuit. As frequency increases, for example for thicker plates or higher
modes (higher bending wave speeds), acoustic short-circuit effects become less significant
until, at sufficiently high frequencies, the radiation efficiency approaches unity. Where
achieving weakly radiating modes becomes an important factor, a means to produce those
mode shapes directedly is desired. Redistribution of damping layers certainly bears this
potential, as has been shown. However, stiffness and mass distribution cannot be modified
independently which may lead to contradicting effects. Optimizing a combination of
damping layer and lumped masses, for example, could help to overcome this problem.

Whether acoustic short-circuit effects can contribute significantly to a minimization of
radiated sound power or not depends on the details of each particular problem (geometry,
boundary conditions, frequency range, etc.). If such effects cannot be excluded or neglected
a priori, they need to be taken into account since, as seen, applying or redistributing a
damping layer may not always result in a reduction of sound power. In general,
optimization gains will be greater if fewer modes must be included. Therefore, the effort
of incorporating the radiation behavior can be beneficial in that it identifies radiationally
dominant modes. However, it also increases complexity of the objective function and hence
makes optimization more difficult. For more complex radiators, sound power calculations
can become computationally very expensive. In order to simplify the optimization task in
the low frequency range, one could consider minimizing the net surface volume velocity
rather than solving the complete radiation problem.

Optimal solutions achieved with the method presented here are specific to the given
excitation. Therefore, other forms of excitation like displacement excitation or acoustic
excitation should be considered. Optimization with respect to a combination of load cases,
for example a worst case scenario, is also conceivable. Frequency dependent loads can
easily be incorporated. The general approach used in this paper is not limited to
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unconstrained damping layers but can also be applied to other devices for vibration
reduction. For systems with closely spaced resonances or stronger overall damping a
refinement of the resonance tracking method will be necessary.
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